STEELMASTER 2021

XXIV Edizione (Corso on-line)

1ª Settimana

25-29 Ottobre 2021

2ª Settimana

22-26 Novembre 2021

Anti-pick-up Coatings for furnace rolls in CALs & CGLs

N.Zacchetti, S. Lionetti– Rina Consulting – CSM

<u> Nicoletta.zacchetti@rina.org, Stefano.Lionetti@rina.orc</u>

Design of anti-pick-up coatings

The design of pick-up resistant coating solutions were outlined according to the different pick-up type and the formation mechanism at low and high temperatures :

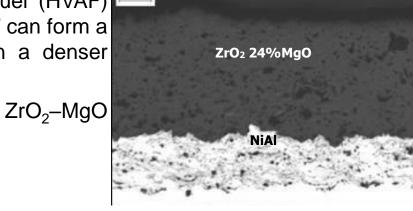
- At low temperatures: mechanical bonding and sintering of Fe particles induced by coating's surface roughness and by metal friction due to the presence of a metallic binder in cermet coatings. Coatings for cooling & overageing sections.
- At high temperatures: Chemical interaction of MnO/SiO₂ (from steels) due to the presence of Cr₂O₃ / Al₂O₃ (from coatings) forming sticky spinels. Coatings for heating & soaking sections.
- For both applications, hardness must be improved for avoiding wear defects.

Roll coatings for low temperature applications

- Chemical interactions between rolls and strip oxides are not an issue: kinetics is too slow at temperatures < 500°C;</p>
- Mechanical interactions occur: coating's surface roughness should be as low as possible;
- Sintering between Fe debris and the metal binder in the coating can occur making Fe pick-ups very adherent: the amount of metal in the coating must be limited.

Coatings must be smooth, dense, with no or lowest possible metal and characterized by a high hardness.

Roll coatings for low temperature applications

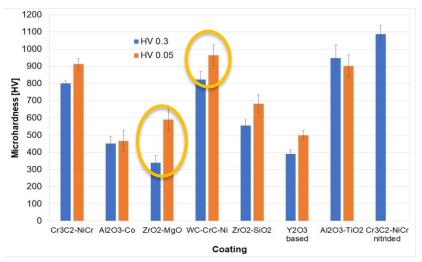

WC-CrC-Ni (73%-20%-7%) cermet coating has a low metal binder.

Cermet coatings deposited by High Velocity Air Fuel (HVAF) instead of High Velocity Oxygen Fuel (HVOF). **HVAF** can form a more uniform and finer dispersion of ceramics in a denser metallic matrix → higher hardness

Ceramic oxide coatings with bond coats, i.e.

coating

Coaling	
Measurement	Value
Thickness (µm)	170
Porosity (%)	0,35
Oxides (%)	0,2
Microhardness (HV 0.3)	1200


	substrate	Bond-coat	Top coat
	AISI 304	NiAl	zirconia
CTE	17x10 ⁻⁶ °C ⁻¹	13x10 ⁻⁶ °C ⁻¹	11-13x 10 ⁻⁶ °C

Roll coatings for low temperature applications

	4
KI	

Coating type	Powder Composition
	Cr ₃ C ₂ in NiCr *
Cermet	Al ₂ O ₃ in Co (Cr, Al, Ni, Nb) *
	WC-CrC-Ni
	plasma nitrided Cr ₃ C ₂ - NiCr
	ZrO ₂ -MgO
Ceramic	ZrO ₂ -SiO ₂
	Al ₂ O ₃ TiO ₂
	Y ₂ O ₃ based

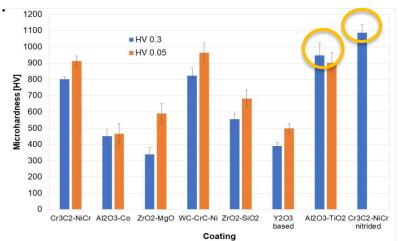
^{*} reference coatings

- ZrO2-MgO coating has a low hardness this behaviour rules out its application.
- The WC-CrC-Ni cermet coating deposited by HVAF having only 7% Ni and appropriate hardness appears to have the best characteristics. Moreover, it has a Co free metallic matrix that complies with the latest REACH regulations.

Roll coatings for high temperature applications

- Reactions between roll's surface oxides and strip oxides occur: to avoid the formation of sticky spinels, cermets with a metal binder containing mainly Ni and/or Co should be preferred.
- Cr and Nb (metallic or carbides) in the cermet coatings partly react in the typical annealing atmosphere (5-7% H₂/N₂, DP< -30°C) and are transformed into nitrides: it is suggested to directly incorporate in the coating stable nitrides by a controlled nitriding process aiming to transform partially Cr and CrC into CrN hard phases.
- ZrO₂ and other stable oxide coatings (i.e., Al₂O₃, Y₂O₃) have shown not to react with the selective oxidation layer on steels.

Roll coatings for high temperature applications


Cr₃C₂ - NiCr cermet coatings submitted to a post-deposition plasma nitriding process in N₂ atmosphere for 24 h at 550°C for surface hardening.

Hard ceramic oxide coatings with an alloy bond coat include, $ZrO_2+(MgO \text{ or } Y_2O_3)$, ZrO_2-SiO_2 , Y_2O_3 -based and $Al_2O_3-TiO_2$ coatings by plasma spraying with

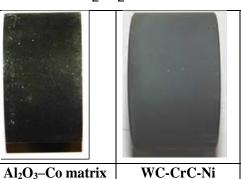
an innovative Water Plasma Torch (WPT).


Coating type	Powder Composition
	Cr ₃ C ₂ in NiCr *
Cermet	Al ₂ O ₃ in Co (Cr, Al, Ni, Nb) *
	WC-CrC-Ni
	plasma nitrided Cr ₃ C ₂ - NiCr
	ZrO ₂ -MgO
Ceramic	ZrO ₂ -SiO ₂
	Al ₂ O ₃ TiO ₂
	Y ₂ O ₃ based

^{*} reference coatings



Dynamic interaction testing at high temperatures



Dynamic interaction test rig for simulating HSS strip / roll coating interactions at 900°C under controlled annealing atmosphere: 5%H₂/N₂; Dew Point -30°C

Cr₃C₂-NiCr and Al₂O₃-Co coatings form small randomly distributed pick-ups,

- nitride Cr₃C₂-NiCr, WC-CrC-Ni and ZrO₂-MgO coatings have few or no pick-ups
- Considerable powdering of the ceramic roll is due to its lower hardness, this behaviour rules out its application

NoStickRolls Project: rolls for testing

The coatings that appeared to have the aimed-for characteristics and hardness were selected for **laboratory tribological testing sequence** with the aim of identifying:

- the best ones for <u>soaking zone application</u> to be tested under <u>semi-industrial conditions</u> at the Roll Strip Interaction test bench
- the best one to coat rolls for industrial trials in the <u>overageing</u> <u>zones</u> in CAL & CGL.

Steelmaster

è una iniziativa sostenuta da

